You are here
Home ›Narrow Search
Now showing results 21-30 of 85
Learners will record detailed observations of a simulated surface and core sample of Mars, analyze a simulated surface and core sample of Mars, compare and contrast an unknown foreign object with the surface and interior of Mars, and learn... (View More) preliminary facts about Mars, its surface, and its place in the Solar System. The lesson uses the 5E instructional model and includes: TEKS Details (Texas Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 2 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
This is a demonstration about the density of the planets. Learners will compare the relative sizes and masses of scale models of the planets as represented by fruits and other foods. They will then dunk the "planets" in water to highlight the fact... (View More) that even a large, massive planet - such as Saturn - can have low density. They discuss how a planet's density is related to whether it is mainly made up of rock or gas. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (View Less)
Learners will model the gravitational fields of planets on a flexible surface. Children place and move balls of different sizes and densities on a plastic sheet to develop a mental picture of how the mass of an object influences how much effect it... (View More) has on the surrounding space. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (View Less)
This is an activity about image comparison. Learners will analyze and compare images taken by the Solar Dynamics Observatory. They will match four magnetic solar images, or magnetograms, to their corresponding extreme ultraviolet, or EUV, light... (View More) images by studying solar features in the images. At the end, they will recognize that areas of high magnetic activity on the Sun correspond to extreme solar activity. (View Less)
This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field... (View More) detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets. (View Less)
Materials Cost: Over $20 per group of students
This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a... (View More) minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun. (View Less)
This is an activity about forecasting space weather. Learners will use real-time data from NASA's Solar Dynamics Observatory, or SDO, to identify a variety of solar features and active regions of the Sun, and then will use these observations to... (View More) predict the probability of a space weather event. This activity will require each student or group of students to have a computer with internet access. (View Less)
Learners will read about Mars and then examine an unknown sample (such as a sandwich or "fun size" chocolate bar) to determine if the sample could have come from Mars. The lesson uses the 5E instructional model and includes: TEKS Details (Texas... (View More) Standards alignment), Essential Question, Science Notebook, Vocabulary Definitions for Students, Vocabulary Definitions for Teachers, three Vocabulary Cards, and a Mini-Lesson. This is lesson 2 of the Mars Rover Celebration Unit, a six week long curriculum. (View Less)
The 9-session NASA Family Science Night program emables middle school children and their families to discover the wide variety of science, technology, engineering, and mathematics being performed at NASA and in everyday life. Family Science Night... (View More) programs explore various themes on the Sun, the Moon, the Stars, and the Universe through fun, hands-on activities, including at-home experiments. Instructions for obtaining the facilitator's guide are available on the Family Science Night site. (View Less)
The lessons in this book focus on scale and proportion as mathematical topics, using the 5E instructional cycle. Students explore lunar images, and a number of hands-on activities are also provided to allow students to create and explore... (View More) scale-models for spacecraft and lunar craters. (View Less)