## You are here

Home ›## Narrow Search

**Earth and space science**

**Solar system**

Now showing results **21-30** of **39**

This is a 15-day unit of inquiry-based lessons about the surface features of the Moon and the Earth and how these two worlds formed and continue to evolve. Students participate in real science as they help lunar scientists map the surface of the... (View More) Moon with MoonMappers, an online citizen science project that lets the public analyze real data from NASA's Lunar Reconnaissance Orbiter. The lessons in this unit follow the 5E instructional model. Includes an overview of citizen science, glossary of lunar feature vocabulary, alignment to NGSS and NSES, and featured links. (View Less)

This is a book about the importance of the Sun's energy as it relates to its impact on the Earth’s environment. Learners will read or listen to a story about a young boy, Joshua, who finds out that the Sun provides the Earth with energy in the... (View More) form of light and heat, which is necessary for all forms of life, for maintaining Earth's environment, and for allowing humans to produce their own forms of energy. Additionally, an extension activity is included, Searching for the Sun, where learners can conduct a hands-on experiment observing how plants grow towards sunlight in order to make conclusions about why the Sun’s energy is a necessary component for life. Reading and vocabulary activities are also included. (View Less)

This is a lesson about the electromagnetic spectrum. Learners will read two pages of information about the electromagnetic spectrum and answer questions in an accompanying worksheet. This activity is from the Stanford Solar Center's All About the... (View More) Sun: Sun and Stars activity guide for Grades 5-8 and can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)

This is a lesson about density. Learners will relate the concept of density to the density of dust in space. They will use mission data from the Student Dust Counter (SDC) interface to determine the density of dust grains in a volume of space in the... (View More) Solar System in order to answer questions concerning the distribution of dust in the solar system. They will discover that space is much more sparsely populated with dust than they may have thought. Students discuss their findings with the class. (View Less)

This is a lesson about the distribution of dust in the solar system. Learners will use data from the Student Dust Counter (SDC) Data Viewer to establish any trends in the distribution of dust. Students record the number of dust particles, or hits,... (View More) recorded by the instrument and the average mass of the particles in a given region. (View Less)

This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with... (View More) more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 37 space science mathematical problems, several of which use authentic science data. The problems involve math skills such as unit conversions, geometry, trigonometry, algebra, graph analysis, vectors, scientific... (View More) notation, and many others. Learners will use mathematics to explore science topics related to Earth's magnetic field, space weather, the Sun, and other related concepts. This booklet can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 96 mathematics problems involving skills relating to algebra, fractions, graph analysis, geometry, measurement, scale, calculus, and other topics. Learners will use mathematics to explore NASA science and space... (View More) exploration content relating to space weather, the study of the Sun and its interactions with Earth. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities, and there are problem sets for learners in grades 3-5, 6-8 and 9-12. This booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about the detection of magnetic storms. Learners will plot the locations of magnetic observatories in Canada and analyze the magnetic intensity for each station, looking for the difference between stable magnetic activity and the... (View More) largest difference in change in magnetic activity and identifying any patterns of change. This is the thirteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is an activity about observing the Sun. Learners will construct a pinhole projector to project an image of the Sun, observe and record the size of the projected image, and calculate the diameter of the Sun using the measurements and a known... (View More) distance to the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: 1 cent - $1 per group of students