## You are here

Home ›## Narrow Search

**Earth and space science**

**Solar system**

Now showing results **21-30** of **34**

This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with... (View More) more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 37 space science mathematical problems, several of which use authentic science data. The problems involve math skills such as unit conversions, geometry, trigonometry, algebra, graph analysis, vectors, scientific... (View More) notation, and many others. Learners will use mathematics to explore science topics related to Earth's magnetic field, space weather, the Sun, and other related concepts. This booklet can be found on the Space Math@NASA website. (View Less)

This is a booklet containing 96 mathematics problems involving skills relating to algebra, fractions, graph analysis, geometry, measurement, scale, calculus, and other topics. Learners will use mathematics to explore NASA science and space... (View More) exploration content relating to space weather, the study of the Sun and its interactions with Earth. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities, and there are problem sets for learners in grades 3-5, 6-8 and 9-12. This booklet can be found on the Space Math@NASA website. (View Less)

This is an activity about the detection of magnetic storms. Learners will plot the locations of magnetic observatories in Canada and analyze the magnetic intensity for each station, looking for the difference between stable magnetic activity and the... (View More) largest difference in change in magnetic activity and identifying any patterns of change. This is the thirteenth activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is an activity about observing the Sun. Learners will construct a pinhole projector to project an image of the Sun, observe and record the size of the projected image, and calculate the diameter of the Sun using the measurements and a known... (View More) distance to the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: 1 cent - $1 per group of students

This is a mathematical lesson utilizing algebra to investigate Earth's magnetosphere. Learners will solve algebraic distance equations that will show how the distance to the Earth's magnetopause depends on the incoming solar wind pressure. This is... (View More) the twentieth and final activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is a lesson about the mathematics of auroras. Learners will be exposed to the mathematical formulas that are used to estimate how much magnetic energy is available in the magnetic tail region of Earth. This is the nineteenth activity in the... (View More) Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

This is an activity about the movement of sunspots. Learners will project an image of the Sun using a telescope, binoculars, or a pinhole projector, observe and record sunspots over the course of several days, and calculate the speed of the observed... (View More) sunspots to, therefore, determine the rotation rate of the Sun. This activity is from the Touch the Sun educator guide. (View Less)

Materials Cost: Over $20 per group of students

This is an activity about the solar cycle. Learners will use X-ray data from the Geostationary Operational Environmental Satellite (GOES) and record the total number of solar flares in their birth month over the course of eleven years and compute... (View More) the percentage of high-energy X-ray flares which occur for each year. Learners will graph their findings to help them identify the long term pattern of flare activity on the Sun. (View Less)

This is a lesson about our Sun. Learners will read a page of information about our Sun and answer questions in an accompanying worksheet. This activity is from the Stanford Solar Center's All About the Sun: Sun and Stars activity guide for Grades... (View More) 2-4 and can also accompany the Stanford Solar Center's Build Your Own Spectroscope activity. (View Less)