## You are here

Home ›## Narrow Search

**Earth and space science**

**Solar system**

Now showing results **1-10** of **10**

This collection of activities is based on a weekly series of space science mathematics problems distributed during the 2012-2013 school year. They were intended for students looking for additional challenges in the math and physical science... (View More) curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teacher’s Guide and Answer Key as a second page. (View Less)

Students will learn about the twin STEREO spacecraft and how they are being used to track solar storms through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will examine data to learn more about the frequency... (View More) and speed of solar storms traveling from the Sun to Earth. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Students will learn about the Transit of Venus through reading a NASA press release and viewing a NASA eClips™ video that describes several ways to observe transits. Then students will study angular measurement by learning about parallax and how... (View More) astronomers use this geometric effect to determine the distance to Venus during a Transit of Venus. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. Students will learn more about space weather through reading a NASA press release and viewing a NASA... (View More) eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of different samples of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

During the last sunspot cycle between 1996-2008, over 21,000 flares and 13,000 clouds of plasma exploded from the Sun's magnetically active surface. These events create space weather. Students will learn more about space weather and how it affects... (View More) Earth through reading a NASA press release and viewing a NASA eClips™ video segment. Then students will explore the statistics of various types of space weather storms by determining the mean, median and mode of a sample of storm events. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence. (View Less)

Net Radiative Flux (NRF) is used to determine the flow of solar energy in and out of the Earth system. NRF is influenced by seasonal variations related to the tilt of the Earth's axis and degree of cloud cover as well as Earth’s surface features.... (View More) Using measurements taken by the CERES instrument, students will observe and analyze NRF patterns. Analysis will focus on seasonal shifts and the impact of both surface features and clouds. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary and a list of related AP Environmental Science topics. (View Less)

In this activity, student teams design small-scale physical models of hot and cold planets, (Venus and Mars), and learn that small scale models allow researchers to determine how much larger systems function. There is both a team challenge and... (View More) competition built into this activity. Experimental findings are then used to support a discussion of human outposts on Mars. The resource includes an experimental design guide for students as well as a handout outlining a method for the design of controlled experiments, and student data sheets. Student questions and an essay assignment are provided as classroom assessments. This is Activity A in the second module, titled "Modeling hot and cold planets," of the resource, "Earth Climate Course: What Determines a Planet's Climate?" The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)

In this activity, students pose several hypotheses for what will happen if you continue heating or supplying energy to the hot and cold planet models (Mercury, Mars, Venus, and Earth) and then test their hypotheses using a spreadsheet based... (View More) radiation balance model. The activity supports investigation of a real world challenge, experimenting with life support conditions for Mars at an Arctic outpost. The interactive model runs are conducted using a Java applet. This resource includes student worksheets, assessment questions and a teacher's guide. This is Activity B in module 2, Modeling hot and cold planets, of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)

In this kinesthetic activity, the concept of energy budget is strengthened as students conduct three simulations using play money as units of energy, and students serve as parts of a planetary radiation balance model. Students will determine the... (View More) energy budget of a planet by manipulating gas concentrations, energy inputs and outputs in the system in this lesson that supports the study of climate on Mars, Mercury, Venus and Earth. The lesson supports understanding of the real-world problem of contemporary climate change. The resource includes a teacher's guide and several student worksheets. This is the second of four activities in the lesson, How do Atmospheres affect planetary temperatures?, within Earth Climate Course: What Determines a Planet's Climate? The resource aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales. (View Less)

This is a lesson that uses the study of sunspots to show how a scientific theory develops and how current technology might be used to support it. Learners will use E.W. Maunder's theory regarding the correlation between the numbers of sunspots and... (View More) Earth's climate by considering a set of clues based on Maunder's data. Three activities are included, starting with graphing over 387 years of sunspot data, investigating climate and possible sunspot connections to literature, history and the arts, and, finally, introducing what tree rings can tell us about climate history. (View Less)