You are here
Home ›Now showing results 1-10 of 16
This is the second module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and uses online videos, data from the SDO satellite and hands-on activities to explore, research... (View More) and build knowledge about how and why studying the Sun's electromagnetic energy and magnetic fields help scientists better understand the Sun's activity and space weather. Students build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide is included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 2A: The Sun and the EM Spectrum students learn how SDO uses key parts of the Sun's electromagnetic spectrum (EMS) to research regions of the Sun, create an interactive foldable to describe the different wavebands of the EMS, then use real-time SDO image data and the Helioviewer online tool to explore the Sun's regional activity. Tutorials for using Helioviewer and making the EMS foldable are included. Activity 2B: Solar activity and Magnetism has students use information in online videos and slide presentations to demonstrate concepts of magnetism and the relationship between the Sun's variable magnetic fields and sunspots. Activity 3B: Solar Research in Action! Build a Spectroscope has students create a spectroscope to observe the different wavebands of visible light, demonstrate how the Sun emits varying EMS energies, and explain how this information helps scientists understand the composition and activity of both our nearest star, and other stars in the universe. A computer for student-teams and a connection to the Internet are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the third module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and utilizes online videos, data from the SDO satellite and hands-on activities to explore,... (View More) research and build knowledge about how the Sun's varying activity impacts Earth and space weather. Each activity provides opportunities to build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide are included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 3A: Sun-Earth Interactions, students gather information from online videos and create a 3D model to demonstrate the relationship to Earth's place in space and the affect of Earth's axial tilt on our seasons, then film a short video explaining the reasons for the seasons. Activity 3B: Space Weather, students use online videos to gather information on what space weather is, and its causes and effects, to create a concept map. They then use real-time SDO data to forecast space weather. Activity 3C: Solar Research in Action! Make a Magnetometer has students view information in online videos about to Earth's magnetosphere and the impacts of space weather, then create a magnetometer to detect and visualize changes in the Earth's magnetic fields to monitor solar storm impacts. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
In this self-paced, interactive tutorial, learners become familiar with basic concepts related to remote sensing of the Earth by satellites. Geosynchronous Earth Orbit (GEO) and Low Earth Orbit (LEO) satellites, as well as different types of onboard... (View More) sensors, are examined for their applicability to various real-world data collection and research applications. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in). (View Less)
This self-paced, interactive tutorial explores the use of remote sensing to monitor the weather and climate of the Great Lakes. Learners apply NASA satellite data as they examine the on-the-ground impact of seasonal changes in weather, including the... (View More) movement of storm tracks, lake-effect and lake-enhanced weather events, and become more familiar with the weather and climate of the Great Lakes region. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Great Lakes Weather and Climate. (Note: requires Java plug-in). (View Less)
This self-paced, interactive tutorial incorporates data sets from a variety of sources to investigate coastal oceanographic processes and their connections to climate and biology. Learners will predict coastal upwelling events based on prevailing... (View More) physical conditions, and become familiar with how upwelling and bloom events in the ocean can be detected using satellite imagery, and make connections between local ocean conditions and global consequences. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Coastal Upwelling. (Note: requires Java plug-in) (View Less)
This is a self-paced, on-line tutorial where learners can identify and analyze jet streams using water vapor imagery from weather satellites. Learners are introduced to the concept and function of the water vapor channel and how these images compare... (View More) with weather models. An optional embedded refresher tutorial with providing meteorological background information about jet streams supports student-centered investigations in three learning scenarios: a jet stream tracking challenge made by a TV meteorologist, analyzing data in a in-air turbulence scenario involving an airline pilot, and a decision-making challenge involving the launching and tracking of a weather balloon. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Water Vapor Imagery. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial enables learners to identify and measure iceberg size from remotely-sensed satellite images. Two techniques are explored: the geometric shape method, which provides a rapid rough estimate of area; and the pixel... (View More) count method, which employs special software to measure the size more accurately. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial provides learners with an opportunity to learn about remote sensors, and the role remote-sensing instruments play in our understanding of the Earth system. Activities within the tutorial allow learners to... (View More) demonstrate for themselves how atmospheric absorption and the signal-to-noise ratio determine the spectral resolution of a remotely-sensed image. A culminating simulation activity shows learners how engineers must consider design tradeoffs between quality and quantity of data produced. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the second of three modules in the tutorial, Principles in Remote Sensing. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial guides learners through the decision-making process in locating data that will enable the identification of tabular icebergs, including: selecting the appropriate satellite orbit, and identifying the optimal... (View More) solar and infrared wavelength values to discriminate between water and ice in remotely-sensed images. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the first of three modules in the tutorial, Hunting Icebergs. (Note: requires Java plug-in) (View Less)
This self-paced, interactive tutorial examines upwelling in non-coastal regions of the ocean as well as the factors that influence algal blooms. Learners become familiar with ocean dynamics that create a surface deficit of water and cause upwelling,... (View More) and engage in activities that allow them to detect and measure the areal extent of blooms using remotely-sensed imagery. This resource is part of the tutorial series, Satellite Observations in Science Education, and is the third of three modules in the tutorial, Coastal Upwelling. (Note: requires Java plug-in) (View Less)