You are here
Home ›Narrow Search
Now showing results 1-10 of 24
This collection of activities is based on a weekly series of space science mathematics problems distributed during the 2012-2013 school year. They were intended for students looking for additional challenges in the math and physical science... (View More) curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teacher’s Guide and Answer Key as a second page. (View Less)
In this activity, users download and graph modeled climate data to explore variability in climate change. Most people know that climate changes are predicted over the next hundred years, but they may not be aware that these changes are likely to... (View More) vary from region to region. Using data from the University of New Hampshire's EOS-WEBSTER, a digital library of Earth Science data, users will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for each of these 5 states: New York, Georgia, Colorado, Minnesota, and California. Data will span the years 2000 through 2100. Users will import the data into Excel and analyze it to see what, if any, regional variability exists. Finally, they will download data for their own state, compare these results with the results from the other 5 states and use their results to answer questions related to climate change. This chapter is part of the Earth Exploration Toolbook (EET). Each EET chapter provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
Through an analysis of data sets on four parameters - sea ice totals, sea surface temperatures, near surface temperatures and surface type - students must decide whether the Arctic is experiencing climate change and predict any potential effects on... (View More) the rest of the planet. The activity in this lesson involves card sorting, a technique in which index cards, each containing content or diagrams, are grouped according to unifying concepts. The cards in this lesson contain graphs that students have downloaded, summaries they have written, and questions they have derived from the lesson. The graphs used in this activity show satellite data sets for a location above the Arctic Circle. Students will analyze and group the cards and will then write a conclusion in which they explain the connection between the four parameters, and relate them back to climate change. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and a list of related AP Environmental Science topics. (View Less)
In this data activity, students explore the relationship between surface radiation and mean surface temperature in several geographic regions. By observing how these parameters change with latitude, students will understand the relationship between... (View More) solar radiation and seasonal temperature variation. This activity is part of the MY NASA DATA Scientist Tracking Network unit, designed to provide practice in accessing and using authentic satellite data. (View Less)
Assuming the role of a meteorologist, students will proclaim one month as "Thunderstorm season" for their chosen study area. This decision will be based on analysis of deep convective cloud data downloaded from the Live Access Server. This lesson... (View More) uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary. (View Less)
Satellite data analysis of both ocean currents and sea surface temperatures will allow students to discover the link that exists between them. Students will download data-based maps on which they will determine and then draw directional movement of... (View More) currents. Then, in both groups and individually, they will discuss the relationship between the currents and sea surface temperatures, answer a set of questions, and predict changes in the appearance of the maps if Earth continues its warming trend. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, and an online glossary. (View Less)
Tree ring analysis and satellite data observations are combined in this investigative lesson on past climate. Students will compare the width of tree rings from a real or virtual tree x-section with precipitation levels from authentic satellite... (View More) observations for that same time period. They will then analyze the two sets of data to interpret past climate patterns. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary, and data analysis tools. (View Less)
The strength of the historic 1997-1999 El Niño Southern Oscillation (ENSO) event was captured and recorded by NASA Earth observing satellites. By downloading and plotting that satellite data, students will observe and analyze El Niño's effect on... (View More) sea level height and sea surface temperatures. Students will then determine the effects of that same El Niño event on their local environment by downloading and plotting precipitation data for their latitude and longitude. Researching data from beyond the 1997-99 period will also allow students to study the subsequent La Niña. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extensions, an online glossary and a list of related AP Environmental Science topics. (View Less)
Latitude and longitude impact climate. Students will learn this first hand by researching the climate for a specific 10° x 10° quadrant of the country. Students will download data sets on both temperature and precipitation for their quadrant and... (View More) will determine averages for each of those factors. Using that information, students will construct a climatogram (a climate diagram). After analyzing the climatogram, students will prepare a poster and give an oral presentation. The influence on their quadrant's climate of additional factors such as elevation, topography and solar intensity will also be considered. Note: This lesson involves several activities. Following the recommended sequence and timetable, the lesson could take six to ten 50-minute class periods. It is possible to reduce the time commitment by modifying the activities. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes related links, extension, an online glossary, and a list of related AP Environmental Science topics. (View Less)
This lesson explores the relationship between the amount of water vapor in the atmosphere available for precipitation and actual precipitation levels. After accessing and graphing the satellite data on both water vapor and precipitation levels,... (View More) students will examine, compare and interpret monthly, seasonal, yearly and/or global patterns. This lesson uses student- and citizen science-friendly microsets of authentic NASA Earth system science data from the MY NASA DATA project. It also includes sample graphs, related links, extensions, an online glossary, and data analysis tools. (View Less)