## You are here

Home ›Now showing results **1-10** of **12**

Carl Sagan once claimed that the most important lesson we learn from studying the stars is perspective. To address this concept, this activity offers a scale model of the solar system to be evaluated. There are many versions of solar system scale... (View More) models available; this one is unique for its large scale chosen, the quality of the scaled objects, and the supplementary materials and information provided. The model is extended to include interaction and discovery on the part of learners, and suggested extensions. The set of materials includes a book about the solar system, developed from NASA's "From Earth to the Solar System" (FETTSS) imagery, and appropriate for use with the model. (View Less)

In these math problems, students will examine the characteristics of water droplets in clouds.

In this problem set, students learn about rainfall rates and how to convert them into the volume of water that falls.

This is a set of one-page problems about the scale of objects in images returned by spacecraft. Learners will measure scaled drawings using high-resolution images of the lunar and martian surfaces. Options are presented so that students may learn... (View More) about the Lunar Reconnaissance Orbiter (LRO) mission through a NASA press release or by viewing a NASA eClips™ video [4 min]. Common Core State Standards for Mathematics and English Language Arts are identified. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school. (View Less)

In this problem set, learners will compare before-and-after satellite images of Greece to answer questions related to biomass loss as a result of the 2007 fires. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth... (View More) Science and Climate Change. (View Less)

In this activity, learners explore the size and scale of the universe by shrinking cosmic scale in 4 steps, zooming out from the realm of the Earth and Moon to the realm of the galaxies. This informational brochure was designed as a follow-up... (View More) take-home activity for teen and adult audiences. It can follow informal education activities where participants have experienced related space science programming. This activity allows participants to explore ideas of size and scale in the universe at their own pace. (View Less)

In a mechanical demonstration of the Pythagorean theorem, this example provides a practical, hands-on method for deriving square roots using a carpenter's square. This resource is from PUMAS - Practical Uses of Math and Science - a collection of... (View More) brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)

This is an activity about the movement, or "wandering," of our Earth's magnetic poles. The learner will explore this concept by measuring and calculating the distance the Earth's north magnetic pole has moved over the past 400 years and calculating... (View More) the rate at which the magnetic pole location has changed its position during that time. Finally, learners will use this information to extrapolate how the region for viewing aurorae may change over the next century at the present rate of polar wander. This is Activity 6 in the Exploring Magnetism on Earth teachers guide. (View Less)

This is an activity about determining the distance of a solar flare from the center of the Sun's disk. Learners will use transparency grids overlaid on images of the Sun in order to calculate the distance of a solar flare, similar to a signal... (View More) detection method used by scientists. This is the second activity in the lesson titled, How Does HESSI Take a Picture? (View Less)

This is an activity about determining the size of a solar flare. Learners will measure the diameter of a solar flare by making calculations using transparency grids overlaid on images of the Sun. This is the third activity as part of the "How Does... (View More) HESSI Take a Picture" lesson. (View Less)