## You are here

Home ›## Narrow Search

**Earth and space science**

**Mathematics**

Now showing results **141-150** of **166**

In this interactive, online activity students elect a simple random sample to draw conclusions from data as presented in the Hubble Deep Field-North and Hubble Deep Field-South images. The optimal sample size is determined by exploring sample... (View More) variability, which is introduced through a min/max plot. The mean and median are added in order to pinpoint the spot where variability settles down and the measures of central tendency approach a constant value. The point where that first occurs is the smallest reasonable sample size. Students may work independently or in small groups to complete each activity. This interactive online activity is apart of the online exploration "Galaxy Hunter." Detailed teacher pages, identified as Teaching Tips on the title pages of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. Use sample variability to determine optimal sample size. (View Less)

In this assessment activity, students generate a data sample from either the Hubble Deep Field-North or Hubble Deep Field-South images, and compare the sample to data from the unselected field. This provides students with a real-life example of how... (View More) statistics can be used by scientists. After completing this activity students will be able to compare sample data with the population parameter to determine accuracy of sampling techniques and use statistical data to make conjectures about the universe. This interactive online activity is part of the online exploration “Galaxy Hunter”. Detailed teacher pages, identified as Teaching Tips on the title pages of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. (View Less)

To determine if data values are reasonable, students need to understand the units of measurement and be able to estimate the expected range of values in data. This activity has groups of students collecting and recording data, changing some of the... (View More) numbers, and challenging each other to identify values that are unreasonable for the data set. Students practice the skills of estimation and recognition of numerical values that are outliers, comparing measurements of common classroom objects and soil moisture. This is a learning activity associated with the Soils Chapter of the GLOBE Teachers Guide. (View Less)

Students create a physical model illustrating soil water balance using drinking glasses to represent the soil column, and explain how the model can be used to interpret data and form predictions. Using data from the GLOBE Data Server, they calculate... (View More) the potential evapotranspiration, average monthly temperatures and precipitation for their model. This is a learning activity associated with the GLOBE hydrology investigations and is supported by the Hydrology chapter of the GLOBE Teacher's Guide. (View Less)

Materials Cost: $1 - $5 per group of students

In this activity, students graph second and third order functions, discovering an inverse relationship between squares and square roots and between cubes and cube roots. Students graph these functions on both linear grid (evenly spaced numbers), and... (View More) a log-log grid (evenly space exponents). Graph lines that curve on linear grids transform into straight lines on the log-log grids, with slopes equal to their exponential powers. This activity is activity E3 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this interactive, online activity, students practice estimation skills as they begin to explore the Hubble Deep Field image. Students first give a rough estimate of the number of objects in the image. They then use representative sampling... (View More) techniques to improve upon their original estimates. Finally, they use their estimates to calculate the number of galaxies in the universe. Students can work through the activity independently or in groups. Detailed teacher pages, identified as Teaching Tips on the title page of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This activity is part of the online exploration "The Hubble Deep Field Academy" that is available on the Amazing Space website. (View Less)

This is an activity about auroras. Learners will locate, study, and organize images from the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite and search for a pattern in time of how auroras change. This is the eighteenth... (View More) activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide. (View Less)

Water supply in the Southwestern United States depends on snow. Students discover its importance through analysis and evaluation of data, satellite images, space shuttle photos, and ground-based observations, and then apply their findings in a... (View More) role-play. Working in seven groups representing the states in the Colorado River watershed, students assume the roles of U.S. senators to propose and defend their stand on the allocation of Colorado River water by state and by usage. The URL opens to the investigation directory, with links to teacher and student materials, lesson extensions, resources, teaching tips, and assessment strategies. This is Investigation 4 of four found in the Grades 9-12 Module 1 of Mission Geography. The Mission Geography curriculum integrates data and images from NASA missions with the National Geography Standards. Each of the four investigations in Module 1, while related, can be done independently. (View Less)

Students confront the challenge of improving global agricultural production in order to feed increasingly larger populations. Students evaluate tables, maps, graphs, photos and satellite images detailing global population growth patterns and... (View More) agricultural production levels in order to formulate recommendations. The role of technology is examined throughout. This investigation includes two activities: 1. Students form six teams representing major world regions to consider the need for increasing agricultural production; 2. Students conduct a case study of Mozambique and conclude by distributing and defending monetary investments for possible agricultural production increases. The URL opens to the investigation directory, with links to teacher and student materials, lesson extensions, resources, teaching tips, and assessment strategies. This is Investigation 3 of three found in the Grades 9-12 Module 2 of Mission Geography. The Mission Geography curriculum integrates data and images from NASA missions with the National Geography Standards. Each of the three investigations in Module 2, while related, can be done independently. (View Less)

This activity is about the discovery of water ice on Mars. Learners will record and graph temperature data and use a model of an ice-rich and ice-free surface on Mars to examine how ice content in the martian soil would impact the temperature of a... (View More) Mars microbe after impact. A student information sheet introducing the subject of ice and the search for water on Mars is provided. The activity requires access to a freezer the night before the activity. (View Less)