## You are here

Home ›Now showing results **1-9** of **9**

Through the use of rhythm patterns of sounds presented in a solar system model, learners will collect data to determine orbital periods. Then, using that data, they will derive Kepler’s Third Law (the relationship between the distance of planets... (View More) from the sun and their orbital periods) and apply the equation to search for exoplanets in orbit around extrasolar systems. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS): ESS1.B: Earth and the Solar System. This resource is part of the Infiniscope space exploration experiences. (View Less)

Beginning with an online interactive exploration of Karijini Gorge in Australia and Oak Creek Canyon in Sedona, AZ, learners gather geologic evidence regarding the formation of the red rocks found in each. They then apply that information to support... (View More) a hypothesis as to why the rocks on Mars are red. Educator resources include a 5E instructional lesson and alignments with Next Generation Science Standards (NGSS); the NRC Framework for K-12 Science Education; Common Core State Standards for English Language Arts; and A Framework for 21st Century Learning. This resource is part of the Infiniscope space exploration experiences. (View Less)

In this activity students convert antilogs to logs, and logs to antilogs using scientific notation as an intermediate step. They will thereby develop a look-up table for solving math problems by using logarithms. This is activity D2 in the "Far Out... (View More) Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct multiplying slide rules scaled in Base-10 exponents and use them to calculate products and quotients. They will come to appreciate that super numbers (exponents, orders of magnitude and logarithms) play by... (View More) different rules of arithmetic than ordinary numbers (numbers, powers of ten and antilogs). This is activity A2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct adding slide rules, scaled with linear calibrations like ordinary rulers. Students learn to move these scales relative to each other in ways that add and subtract distances, thus calculating sums and differences.... (View More) This is Activity A1 in the "Far Out Math" educator's guide. Lessons within the guide include activities in which students measure, compare quantities as orders of magnitude, use scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, the GLAST mission was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students add and subtract log distances on their Log Tapes to discover that the corresponding numbers multiply and divide. This will lead them to an experiential understanding of the laws of logarithms. This is activity B2 in the... (View More) "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity students construct Log Tapes calibrated in base-ten exponents, then use them to derive relationships between base-ten logs (exponents) and antilogs (ordinary numbers). This is activity B1 in the "Far Out Math" educator's guide.... (View More) Lessons in the guide include activities in which students measure,compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

In this activity, students construct classic slide rules and use them like calculators. Students use the slide rules to read scales, determine significant figures, and estimate decimal places. This is activity D3 in the "Far Out Math" educator's... (View More) guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi. (View Less)

This is an activity about the Aurora Borealis or Northern Lights. Learners will plot the Auroral Oval in the northern hemisphere and determine the height of the northern lights using Carl Stormer's triangulation method. This activity corresponds to... (View More) the NASA CONNECT video, titled Dancing in the Night Sky, and has supplemental questions to support the video viewing. (View Less)