You are here
Home ›Narrow Search
Now showing results 1-10 of 14
Students will use the law of reflection to reflect a laser beam off multiple mirrors to hit a sticker in a shoebox. Since X-ray telescopes must use grazing angles to collect X-rays, students will design layouts with the largest possible angles of... (View More) reflection. This activity is from the NuSTAR Educators Guide: X-Rays on Earth and from Space, which focuses on the science and engineering design of NASA's NuSTAR mission. The guide includes a standards matrix, assessment rubrics, instructor background materials, and student handouts. (View Less)
In this activity, students are introduced to light and colored gels (filters). Students make and test predictions about light and color using gels; learn about the importance of gels (filters) to astronomers; then analyze images taken with regular... (View More) and infrared cameras to see that objects opaque to light at one wavelength, may be transparent to light of a different wavelength. Section 1 of the activity guide includes teacher notes, information on materials and preparation, student misconceptions, and a student pre-test. Each activity section also includes teacher notes, student activity sheets, and answer keys. This activity is the first of four activities in Active Astronomy, which are designed to complement instruction on the electromagnetic spectrum, focusing on infrared light. (View Less)
In this activity, students build a photocell detector, and use it to detect different colors of light in a spectrum. Then they place the detector just outside the red region of the visible light spectrum and see that the detector detects the... (View More) presence of light there, even though there is no color visible. Students learn that invisible light exists and that we can detect this light with instruments other than our eyes. In a final part of the activity, students investigate the infrared signals emitted by TV and VCR remote controls. The activities build upon each other and are best taught in order. Section 1 of the activity guide includes teacher notes, information on materials and preparation, student misconceptions and a student pre-test. Each activity section also includes teacher notes, student activity sheets, and answer keys. This activity requires some special materials (e.g. a small solar cell, alligator clip leads, plus common classroom materials (e.g., overhead or slide projector). This activity is the second of four activities in Active Astronomy, which are designed to complement instruction on the electromagnetic spectrum, focusing on infrared light. (View Less)
In this lesson, students will investigate the Doppler Effect and discover how the same principle can be used to identify a possible tornado in storm clouds and investigate the rotation of distant galaxies. Students should be familiar with the... (View More) electromagnetic spectrum and the concept of Doppler Shift (links to background information are provided). Materials required for every group of 2-4 students include: a Slinky toy, safety glasses, meter stick, and colored pencils. This lesson is part of the Cosmic Times teachers guide and is intended to be used in conjunction with the 1965 Cosmic Times Poster. (View Less)
In this two-part investigation, students explore the concept of transits. In the first part, they discover that a transit is an event where one body crosses in front of another, like when a planet goes in front of a star. In the second part,... (View More) students investigate how a planet's size and orbit affect the transit and then learn how to interpret transit graphs. Extension activities, an explanation of the mathematics used in the activity, background information, real data from NASA missions, and an answer key are included. (View Less)
This demonstration allows students to visualize inversion in a fluid, explain it in terms of density, and apply the concept to weather systems and convection. Materials required include four Ehrlenmeyer flasks, two thin glass plates, a heat source,... (View More) and food coloring. The investigation supports material presented in chapter 7, What Causes Thunderstorms and Tornadoes?, in the textbook Energy flow, part of Global System Science, an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
Students use a calorimeter made of common materials to demonstrate that energy can be measured and converted from one form to another. Hydrocarbons, such as paraffin, contain stored chemical energy; food contains stored chemical energy. The activity... (View More) uses a raw potato, a nut, a candle, an aluminum drink can, a thermometer, and a balance scale. A data sheet is included in the resource. The investigation supports material presented in chapter 1, "What is Energy?" in the textbook, Energy Flow, part of Global System Science (GSS), an interdisciplinary course for high school students that emphasizes how scientists from a wide variety of fields work together to understand significant problems of global impact. (View Less)
In this demonstration, evidence of the Earth's rotation is observed. A tripod, swiveling desk chair, fishing line and pendulum bob (e.g., fishing weight or plumb bob) are required for the demonstration. This resource is from PUMAS - Practical Uses... (View More) of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications. (View Less)
This is an activity about the basic properties of magnets and magnetism. Learners explore concepts such as magnetic fields and polarity, which form the basic ingredients of a study of Earth's magnetic field and the technology of magnetometers.... (View More) Materials needed include bar magnets and paper clips. This is Activity 1 of Exploring Magnetism: A Teacher's Magnetism Activity Guide. (View Less)
This is a lesson about how magnetism causes solar flares. Learners will set up an electrical circuit with magnets to examine magnetic fields and their similarities to magnetic fields seen on the Sun. Learners should have a conceptual understanding... (View More) of magnetism prior to exploring this lesson. This activity requires special materials including a galvanometer, copper wire, and sandpaper. This is Activity 2 in the Exploring Magnetism in Solar Flares teachers guide. (View Less)