You are here
Home ›Now showing results 1-5 of 5
In this activity, users examine satellite images from NASA's Total Ozone Mapping Spectrometer (TOMS) that show how much ozone is in the atmosphere over the Southern Hemisphere. They interpret the images to identify ozone thinning that develops over... (View More) this region each summer, and compare its size from year to year. Using freely-available image analysis software, ImageJ, users quantify the area of the Antarctic ozone hole each October from 1996 to 2004. Finally, they bring their measurements into a spreadsheet program and create a graph to document changes in the size of the ozone hole. This chapter is part of the Earth Exploration Toolbook, which provides teachers and/or students with direct practice for using scientific tools to analyze Earth science data. Students should begin on the Case Study page. (View Less)
This is a lesson about the evidence for life on other planets. Learners will play a game to examine processes in cellular metabolism and explore both direct and indirect evidence for fingerprints of life. Includes teacher notes, learning objectives,... (View More) and assessment of prior knowledge and preconceptions. This is Lesson 2 in Exploring Deep-Subsurface Life. Earth Analogues for Possible Life on Mars: Lessons and Activities. (View Less)
In this activity, students determine the direction to a gamma ray burst using the times it is detected by three different spacecraft located somewhere in the solar system. We assume that all the spacecraft are in the plane of the Earth's orbit... (View More) around the Sun; that is, there is no third dimension and that we are only concerned with two dimensions, x and y. We also assume the burst is billions of light years away, so the incoming gamma rays are traveling along parallel lines. This activity is part of a unit that is designed to use gamma-ray bursts - unimaginably huge explosions that signal the births of black holes - as an engagement tool to teach selected topics in physical science and mathematics. The guide is based on the 5E instructional sequence and features background information, assessments, student worksheets, extension and transfer activities. (View Less)
This interactive, online module reviews the basics of the the electromagnetic spectrum and makes the connection between radiation theory and the images we get from weather satellites. Students will learn about: the electromagnetic spectrum;... (View More) electromagnetic waves; the electromagnetic spectrum and radiation theory; and how satellite radiometers "see" different sections of the spectrum. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)
In this interactive, online module, students learn about satellite orbits (geostationary and polar), remote-sensing satellite instruments (radiometers and sounders), satellite images, and the math and physics behind satellite technology. The module... (View More) is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections. (View Less)