You are here
Home ›Narrow Search
Now showing results 1-10 of 19
Each lesson or activity in this toolkit is related to NASA's Lunar Reconnaissance Orbiter (LRO). The toolkit is designed so that each lesson can be done independently, or combined and taught in a sequence. The Teacher Implementation Guide provides... (View More) recommendations for combining the lessons into three main strands: 1) Lunar Exploration - These lessons provide a basic introduction to Moon exploration. Note that this strand is also appropriate for use in social studies classes. 2) Mapping the Moon - These lessons provide a more in-depth understanding of Moon exploration through the use of scientific data and student inquiry. The lessons also include many connections to Earth science and geology. 3) Tools of Investigation - These higher-level lessons examine the role of technology, engineering and physics in collecting and analyzing data. (View Less)
This is an activity about how much atmospheric pressure is needed on Mars to maintain surface water and why the planet does not have surface water today. Learners will use a computer interactive to learn about Mars past and present before exploring... (View More) the pressure and greenhouse strength needed for Mars to have a watery surface as it had in the past. This lesson is part of Project Spectra, a science and engineering education program focusing on how light is used to explore the Solar System. (View Less)
This is a demonstration about the density of the planets. Learners will compare the relative sizes and masses of scale models of the planets as represented by fruits and other foods. They will then dunk the "planets" in water to highlight the fact... (View More) that even a large, massive planet - such as Saturn - can have low density. They discuss how a planet's density is related to whether it is mainly made up of rock or gas. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (View Less)
Learners will model the gravitational fields of planets on a flexible surface. Children place and move balls of different sizes and densities on a plastic sheet to develop a mental picture of how the mass of an object influences how much effect it... (View More) has on the surrounding space. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments. (View Less)
Learners will build an open spectrograph to calculate the angle the light is transmitted through a holographic diffraction grating. After finding the desired angles, the students will design their own spectrograph using the information learned. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is an activity about the Signal-to-Noise Ratio. Learners will engage with a hands-on activity and an online interactive to understand the terms signal and noise as they relate to spacecraft communication; quantify noise using a given dataset;... (View More) and calculate the signal-to-noise ratio. The activity also includes a pencil-and-paper component that addresses relevant topics, such as proportions and ratios. Includes teacher background information, student data sheets, answer guide, extensions and adaptions. (View Less)
Learners will compare known elemental spectra with spectra of Titan and Saturn’s rings from a spectrometer aboard the NASA Cassini spacecraft. They identify the elements visible in the planetary and lunar spectra. The activity is part of Project... (View More) Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will use a spectrograph to gather data about light sources. Using the data they’ve collected, students are able to make comparisons between different light sources and make conjectures about the composition of a mystery light source. The... (View More) activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
Learners will interpret spectral graphs to determine the atmospheric composition of Earth, Venus, and Mars, and then mathematically compare the amount of the greenhouse gas, CO2, on these planets. Students will brainstorm what things, along with... (View More) greenhouse gases, can affect a planet’s temperature. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)
This is an activity about detecting elements by using light. Learners will develop and apply methods to identify and interpret patterns to the identification of fingerprints. They look at fingerprints of their classmates, snowflakes, and finally... (View More) "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System. (View Less)