You are here
Home ›Now showing results 1-10 of 43
This interactive, web-based tool allows you to calibrate your eye by practicing cloud cover estimation using images on the computer.
In this interactive tutorial, learners can explore the physics of contrail formation in the atmosphere and develop the ability to recognize the several types of contrails that form under varying atmospheric conditions. Practice classifying the type... (View More) and abundance of contrails. (View Less)
The atmosphere (including weather and climate) is the focus of this GLOBE eTraining module. Protocols for investigating several characteristics of the atmosphere such as clouds, precipitation (rain and snow), air and surface temperature, and... (View More) relative humidity are explained. In addition, each module includes interactive digital field and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. In addition, each module also includes interactive digital field and lab experiences, and online assessments. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
The pedosphere (soil) is the focus of this GLOBE eTraining program module. Protocols for investigating soil temperature, moisture, characterization, density and infiltration are explained. In addition, each module includes interactive digital field... (View More) and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
The biosphere- that part of Earth's land, water and atmosphere that supports life- is the focus of this GLOBE eTraining program module. Protocols for classifying land cover, performing biometric field studies and measuring green-up and green-down... (View More) are explained. In addition, each protocol module includes interactive digital field and lab experiences along with online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
The hydrosphere (water, ice, and vapor) is the focus of this GLOBE eTraining module. Protocols for investigating many characteristics of water such as temperature, transparency, electrical conductivity, pH, dissolved oxygen, salinity, nitrates, and... (View More) identifying mosquito larvae are explained. In addition, each module includes interactive digital field and lab experiences, and online assessments. Instructions for uploading observations to the GLOBE database as well as for using the GLOBE visualization system are provided. GLOBE eTraining provides the opportunity for new and experienced GLOBE users to complete science protocol training online. In addition, each module also includes interactive digital field and lab experiences, and online assessments. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. (View Less)
This interactive, web-based tool asks a series of questions to help the learner narrow down the type of cloud they are observing. It can be used both for practice and in the field to identify clouds. This resource is part of The GLOBE Program... (View More) Atmosphere Protocol eTraining for Clouds. (View Less)
This is the second module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and uses online videos, data from the SDO satellite and hands-on activities to explore, research... (View More) and build knowledge about how and why studying the Sun's electromagnetic energy and magnetic fields help scientists better understand the Sun's activity and space weather. Students build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide is included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 2A: The Sun and the EM Spectrum students learn how SDO uses key parts of the Sun's electromagnetic spectrum (EMS) to research regions of the Sun, create an interactive foldable to describe the different wavebands of the EMS, then use real-time SDO image data and the Helioviewer online tool to explore the Sun's regional activity. Tutorials for using Helioviewer and making the EMS foldable are included. Activity 2B: Solar activity and Magnetism has students use information in online videos and slide presentations to demonstrate concepts of magnetism and the relationship between the Sun's variable magnetic fields and sunspots. Activity 3B: Solar Research in Action! Build a Spectroscope has students create a spectroscope to observe the different wavebands of visible light, demonstrate how the Sun emits varying EMS energies, and explain how this information helps scientists understand the composition and activity of both our nearest star, and other stars in the universe. A computer for student-teams and a connection to the Internet are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the third module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Each activity is self-directed by students or student teams and utilizes online videos, data from the SDO satellite and hands-on activities to explore,... (View More) research and build knowledge about how the Sun's varying activity impacts Earth and space weather. Each activity provides opportunities to build knowledge and vocabulary, apply or demonstrate learning through real world connections and create resources to use in investigations. Both a teacher and student guide are included with sequential instructions and embedded links to the needed videos, tutorials and internet resources. In Activity 3A: Sun-Earth Interactions, students gather information from online videos and create a 3D model to demonstrate the relationship to Earth's place in space and the affect of Earth's axial tilt on our seasons, then film a short video explaining the reasons for the seasons. Activity 3B: Space Weather, students use online videos to gather information on what space weather is, and its causes and effects, to create a concept map. They then use real-time SDO data to forecast space weather. Activity 3C: Solar Research in Action! Make a Magnetometer has students view information in online videos about to Earth's magnetosphere and the impacts of space weather, then create a magnetometer to detect and visualize changes in the Earth's magnetic fields to monitor solar storm impacts. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This set of three videos illustrates how math is used in satellite data analysis. NASA climate scientist Claire Parkinson explains how the Arctic and Antarctic sea ice covers are measured from satellite data and how math is used to determine trends... (View More) in the data. In the first video, she leads viewers from satellite data collection through obtaining a time series of monthly Arctic and Antarctic average sea ice extents for November 1978-December 2016. In the second video, she begins with the time series from the first video, removes the seasonal cycle by calculating yearly averages, and proceeds to calculate the slopes of the lines to get trends in the data, revealing decreasing sea ice coverage in the Arctic and increasing sea ice coverage in the Antarctic. In the third video, she uses a more advanced technique to remove the seasonal cycle and shows that the trends are close to the same, whichever method is used. She emphasizes the power of math and that the techniques shown for satellite sea ice data can also be applied to a wide range of data sets. Note: See Related & Supplemental Resources for the maps and data files (1978-2016) that will allow you to do the calculations shown in the video. These also include data for different regions of the Arctic and Antarctic, enabling learners to do additional calculations beyond those shown in the videos. (View Less)