You are here
Home ›Narrow Search
Now showing results 1-10 of 11
This is the first module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Activities are self-directed by students or student teams using online videos and data from the SDO satellite to explore, research and build knowledge about... (View More) features of the Sun. Students build vocabulary, apply or demonstrate learning through real world connections, and creating resources to use in their investigations. Each activity comes with both a teacher and student guide with sequential instructions and embedded links to the needed videos and internet resources. Activity 1A: Structure of the Earth's Star takes students through the features and function of the Sun's structures using online videos, completing a "Sun Primer" data sheet using information from the videos, and creating a 3D origami model of the Sun. Students use a KWL chart to track what they have learned. Activity 1B: Observing the Sun has students capture real solar images from SDO data to find and record sunspots and track their movement across the surface of the Sun. Activity 1C has students create a pin-hole camera to use in calculating the actual diameter of the Sun, and then calculate scales to create a Earth-Sun scale model. Students reflect on their learning and results at the end of the module. An internet connection and access to computers are needed to complete this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the fourth and culminating module in the Solar Dynamic Observatory (SDO) Project Suite curriculum. Student teams use information and resources from the other three modules in the project suite to create a 3D interactive solar exhibit to... (View More) educate others about the Sun and how SDO informs scientists about the Sun's activity, structures and features, and Earth-Sun interactions. Students then self-evaluate their team's solar exhibit. Both a teacher and student guide are included, as well as tools for students to self-direct and track project process, and record reflections and information. A computer for student-teams and access to the internet are needed for this module. See related and supplementary resources for link to full curriculum. The appendix includes an alignment to the Next Generation Science Standards (NGSS). (View Less)
This is the culminating lesson in the MMS Mission Educator's Instructional Guide. Learners will choose and complete three activities about the MMS mission. Activity formats can include creating videos, composing songs, developing written materials,... (View More) constructing models, investigating current events, utilizing mathematics to explain concepts, and more. Depending on the project(s) chosen by a student, the activity may require student access to internet accessible computers. The MMS Mission Educator's Instructional Guide uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this lesson, learners will first watch a video about the orbit and formation of the MMS satellites to learn about their flight configuration. After, they will research similar facts about other types of satellites. Next, learners will compute the... (View More) volume of MMS' tetrahedral flight configuration and investigate how the tetrahedral volume changes as the satellites change positions. Finally, they will create a report that outlines their findings. This activity requires student access to internet accessible computers. This is lesson three in the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this lesson, learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power generated in various... (View More) positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
In this lesson, learners will research facts about Atlas V rockets, which launched the MMS satellites. After, they will compute the speed of the launch rocket, given a data chart of time vs. distance from lift-off. Then, they will write a report... (View More) synthesizing their researched information. This lesson requires student access to internet accessible computers. This is lesson two of the MMS Mission Educator's Instructional Guide, which uses examples from the mission to introduce mathematics (focusing on geometry) in a real-world context. The lessons use the 5E instructional cycle. Note: MMS launched March 12, 2015. For the latest science and news, visit the MMS Mission Website under Related & Supplemental Resources (right side of this page). (View Less)
Students will use NASA's Global Climate Change website to research five of the key indicators (vital signs) of Earth’s climate health. These indicators are: global surface temperature, carbon dioxide concentrations, sea level, Arctic sea ice, and... (View More) land ice. They will use this information, shared in their expert groups, to create an informative poster about their assigned key indicator. The poster will be used by other groups to learn about all five of the key indicators and how Earth scientists use these indicators to analyze changes in Earth’s climate. The lesson plan uses the 5E instructional sequence. (View Less)
This is a lesson about the Cassini mission to Saturn. Learners will create their Saturn Discovery Logs. They will use the Saturn Discovery Log to chronicle their journey of discovery about Saturn and Cassini through nonfiction writing. For their... (View More) first log entry, students will draw what they picture when they hear the words "Saturn" and "Cassini," and add labels and captions to their drawings. Students will share their work with partners. This is lesson 1 of 12 in "Reading, Writing & Rings!" for grades 3-4. (View Less)
In this concluding activity, learners will use notes from an earlier lesson to write a nonfiction piece about Saturn or Cassini. These final projects provide a way for children with varying learning styles to consolidate and share their learning.... (View More) This is lesson 12 of 12 in the Mission to Saturn Educators Guide, Reading Writing Rings, for grades 3-4. (View Less)
This is a lesson about the Cassini Spacecraft. Learners will engage in basic problem-solving as they design and construct their own small model of a spacecraft. Through writing and illustration, students will document their work and will complete a... (View More) Design Review Summary. Like scientists and engineers, students will make presentations to show and explain their models and design summaries to their peers. This is lesson 5 of 10 in the Mission to Saturn Educators Guide, Reading Writing Rings, for grades 1-2. (View Less)